تشخیص سایز و موقعیت نسبی ترک در لوله های حاوی سیال با استفاده از شبکه عصبی مصنوعی
نویسندگان
چکیده
در این تحقیق، سایز و موقعیت نسبی ترک، با استفاده از فرکانس¬های طبیعی لوله¬ی محتوی مایع تحت فشار به کمک شبکه عصبی تشخیص داده می¬شود. شبکه¬ی عصبی به کار رفته از نوع پرسپترون چندلایه (mlp) می¬باشد. با مقایسه ی بین ورودی¬های مختلف، ورودی¬های مطلوب انتخاب شدند. سیال داخل لوله آب می¬باشد. لوله¬های مورد استفاده از دو جنس آلومینیوم و فولاد هستند. لوله در چهار وضعیت: خالی از سیال، حاوی سیال با فشار صفر، با فشارmpa 498/0و با فشار mpa 981/0 می¬باشد. محدوده¬ی سایز ترک از 19043/0 تا 6346/0 و محدوده¬ی موقعیت از 199/0 تا 403/0 می¬باشد. در زمینه¬ی تشخیص ترک سازه¬ها بر مبنای خصوصیت تغییرات فرکانس طبیعی با کمک شبکه عصبی تحقیقات زیادی انجام شده است. اما تا آنجایی که مولفین آگاهی دارند، جهت شناسایی ترک در لوله¬های حاوی سیال از روش فوق الذکر استفاده نشده است. همچنین استفاده همزمان از سازه¬های با دو جنس مختلف برای آموزش و تست شبکه عصبی از دیگر نوآوری¬های این تحقیق می باشد. مقایسه روش پیشنهادی در این تحقیق با روش¬های تحلیلی انجام شده، نشان می¬دهد که روش پیشنهادی همواره در تخمین سایز دقیق¬تر می¬باشد ولی در تخمین موقعیت با توجه به تعداد کم نمونه¬ها همواره دقیق¬تر نیست.
منابع مشابه
مدلسازی لوله های انتقال گاز با شبکه های عصبی مصنوعی به منظور تشخیص عیوب آنها
این مقاله معرفی رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از شبکه عصبی مصنوعی به کمک امواج مکانیکی است که این روش بسیار ارزان تر و آسان تر از روش اولتراسوند است. که در حال حاضر مشغول به کارمی باشد. این خطوط معمولا در شرایط محیطی سخت و دور از دسترس و در مسافت های طولانی قرار دارند و استفاده از سیستم های که بصورت آنی و دقیق بتوانند عیب ها و نشتی های این لوله را گزارش دهند حیاتی ...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
متن کاملتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود...
متن کاملتشخیص آپاندیسیت حاد در کودکان با استفاده از شبکه های عصبی مصنوعی
Introduction: Acute appendicitis is one of the most common causes of emergency surgery especially in children. Proper and on-time diagnosis may decrease the unwanted complications. In despite of diagnostic methods, a significant number of patients yet and up with negative laparotomies. The aim of this study was to assess the role of artificial neural networks in diagnosis of acute appendicitis ...
متن کاملتشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی
Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مهندسی مکانیک مدرسناشر: دانشگاه تربیت مدرس
ISSN 1027-5940
دوره 14
شماره 7 2014
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023